Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
PLoS One ; 19(4): e0300025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603704

RESUMO

In this study, we identified a new strain of the genus Neocypholaelaps from the beehives of Apis mellifera colonies in the Republic of Korea (ROK). The Neocypholaelap sp. KOR23 mites were collected from the hives of honeybee apiaries in Wonju, Gangwon-do, in May 2023. Morphological and molecular analyses based on 18S and 28S rRNA gene regions conclusively identified that these mites belong to the genus Neocypholaelaps, closely resembling Neocypholaelaps sp. APGD-2010 that was first isolated from the United States. The presence of 9 of 25 honeybee pathogens in these mite samples suggests that Neocypholaelaps sp. KOR23 mite may act as an intermediate vector and carrier of honeybee diseases. The identification of various honeybee pathogens within this mite highlights their significance in disease transmission among honeybee colonies. This comprehensive study provides valuable insights into the taxonomy and implications of these mites for bee health management and pathogen dissemination.


Assuntos
Ácaros , Varroidae , Abelhas , Animais , República da Coreia
2.
PLoS One ; 19(3): e0299558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502683

RESUMO

Lake Sinai Virus (LSV) is an emerging pathogen known to affect the honeybee (Apis mellifera). However, its prevalence and genomic characteristics in the Republic of Korea (ROK) remain unexplored. This study aimed to assess the prevalence of and analyze the LSVs by examining 266 honeybee samples from the ROK. Our findings revealed that LSV exhibited the highest infection rate among the pathogens observed in Korean apiaries, particularly during the reported period of severe winter loss (SWL) in A. mellifera apiaries in 2022. Three LSV genotypes- 2, 3, and 4 -were identified using RNA-dependent RNA polymerase gene analysis. Importantly, the infection rates of LSV2 (65.2%) and LSV3 (73.3%) were significantly higher in colonies experiencing SWL than in those experiencing normal winter loss (NWL) (p < 0.03). Furthermore, this study provides the first near-complete genome sequences of the Korean LSV2, LSV3, and LSV4 strains, comprising 5,759, 6,040, and 5,985 nt, respectively. Phylogenetic analysis based on these near-complete genome sequences demonstrated a close relationship between LSVs in the ROK and China. The high LSV infection rate in colonies experiencing a heightened mortality rate during winter suggests that this pathogen might contribute to SWL in ROK. Moreover, the genomic characteristic information on LSVs in this study holds immense potential for epidemiological information and the selection of specific genes suitable for preventing and treating LSV, including the promising utilization of RNA interference medicine in the future.


Assuntos
Vírus de RNA , Vírus , Abelhas , Animais , Filogenia , Prevalência , Vírus de RNA/genética , República da Coreia/epidemiologia
3.
Foodborne Pathog Dis ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442228

RESUMO

Multidrug-resistant (MDR) Salmonella enterica serovar Agona infections affect public health globally. This investigation aimed to ascertain the antimicrobial resistance profiles and molecular characteristics of Salmonella Agona isolates obtained from food-producing animals. A total of 209 Salmonella Agona isolates were recovered from mostly chickens (139 isolates), pigs (56 isolates), cattle (11 isolates), and ducks (3 isolates) between 2010 and 2020 in South Korea. In addition, these Salmonella Agona isolates were obtained from 25 slaughterhouses nationwide. Furthermore, this serotype suddenly increased in chickens in 2020. Salmonella Agona from chickens showed high resistance (69-83%) to ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and chloramphenicol. Moreover, chicken/duck isolates (83.1%) showed significantly higher levels of MDR than cattle/pig isolates (1.5%). For molecular analysis by pulsed-field gel electrophoresis, infrared spectroscopy biotyping, and multilocus sequence typing in combination, a total of 23 types were observed. Especially two major types, P1-III-2-13 and P1-IV-2-13, comprised 59.3% of the total isolates spreading in most farms. Moreover, Salmonella Agona sequence type (ST)13 was predominant (96.7%) among three different STs (ST13, ST11, and ST292) widely detected in chickens (94.3%) in most farms located nationwide. Taken together, MDR Salmonella Agona in chickens might pose a potential risk to public health through direct contact or the food chain.

4.
J Food Prot ; 87(3): 100220, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215980

RESUMO

The initial microbial contamination of carcasses during slaughtering adversely affects spoilage and shelf life and is of global concern for food safety and meat quality. This study evaluated the hygiene and quality using the prevalence of foodborne pathogens and the level of indicator bacteria on 200 carcasses, collecting 10 from each of 20 cattle slaughterhouses in Korea. The distribution of aerobic bacterial count in carcasses was significantly highest at 2.0-3.0 log10 CFU/cm2 (34.1%), whereas the Escherichia coli count was significantly highest at under 1.0 log10 CFU/cm2 (94.0%) (P < 0.05). Clostridium perfringens was most prevalent (60.0% of slaughterhouses; 17.5% of carcasses), followed by Yersinia enterocolitica (30.0% of slaughterhouses; 6.5% of carcasses), Staphylococcus aureus (15.0% of slaughterhouses; 4.0% of carcasses), Listeria monocytogenes 1/2a (5.0% of slaughterhouses; 1.0% of carcasses), Salmonella enterica subsp. enterica serovar Infantis (5.0% of slaughterhouses; 1.0% of carcasses), and Shiga toxin-producing E. coli O:66 (5.0% of slaughterhouses; 0.5% of carcasses). Although 28 C. perfringens isolates from 11 slaughterhouses were divided into 21 pulsotypes, all isolates showed the same toxinotype as type A and only carried the cpa. Interestingly, 83.3% of isolates from two slaughterhouses located in the same province showed resistance to tetracycline. Furthermore, 13 Y. enterocolitica isolates from six slaughterhouses were divided into seven pulsotypes that were divided into biotypes 1A and 2 and serotypes O:5 and O:8, except for isolates that could not be typed. Twelve (92.3%) isolates only carried ystB, but one (7.7%) isolate carried ail and ystA. Moreover, 46.2% of Y. enterocolitica isolates showed multidrug resistance against ampicillin, cefoxitin, and amoxicillin/clavulanic acid. This study supports the need for continuous monitoring of slaughterhouses and hygiene management to improve the microbiological safety of carcasses.


Assuntos
Listeria monocytogenes , Salmonella enterica , Salmonella , Bovinos , Animais , Escherichia coli , Matadouros , Carne/microbiologia , República da Coreia
5.
Foodborne Pathog Dis ; 21(1): 1-9, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819680

RESUMO

Listeria monocytogenes is a foodborne pathogen that has variable subtypes associated with human listeriosis and occurs in food and processing environments. This study was conducted to provide the genetic and phenotypic characterization of L. monocytogenes in pig carcasses and environments of slaughterhouses in Korea. A total of 22 L. monocytogenes were isolated from eight of 26 pig slaughterhouses between 2020 and 2022, and the most common serotype was 1/2c (40.9%), followed by serotypes 1/2b (31.8%) and 1/2a (27.3%). The isolates showed a significantly high prevalence of virulence genes located in Listeria pathogenicity island-1 (LIPI-1) and internalins (90.9-100%; p < 0.05). However, the prevalence rates of llsX, ptsA, and stress survival islet-1 (SSI-1) located in LIPI-3, LIPI-4, and SSI were only 9.1%, 22.7%, and 31.8%, respectively. In addition, among the epidemic clones (EC), ECI, ECII, ECIII, and ECV, only one isolate was represented as ECV. Isolates identified from the same slaughterhouses were divided into two or more pulsotypes, except for two slaughterhouses. Furthermore, the seven STs were classified into seven clonal complexes (CCs) (CC8, CC9, CC37, CC87, CC121, CC155, and CC288), and all CCs belonged to lineages I (31.8%) and II (68.1%). Interestingly, the isolates showed a high prevalence of oxacillin resistance (59.1%), and most isolates of the serotypes 1/2a and 1/2b exhibited oxacillin resistance, whereas only one of nine serotype 1/2c isolates exhibited oxacillin resistance. These results provide the genetic diversity of L. monocytogenes in pig carcasses and environments of slaughterhouses, and continuous monitoring will be helpful in predicting food safety risks.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Suínos , Humanos , Listeria monocytogenes/genética , Matadouros , Listeriose/epidemiologia , Oxacilina , República da Coreia/epidemiologia , Microbiologia de Alimentos
6.
Microorganisms ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138136

RESUMO

Enterococcus spp. are typically found in the gastrointestinal tracts of humans and animals. However, they have the potential to produce opportunistic infections that can be transmitted to humans or other animals, along with acquired antibiotic resistance. In this study, we aimed to investigate the antimicrobial resistance profiles of Enterococcus faecium and Enterococcus faecalis isolates obtained from companion animal dogs and cats in Korea during 2020-2022. The resistance rates in E. faecalis towards most of the tested antimicrobials were relatively higher than those in E. faecium isolated from dogs and cats. We found relatively higher resistance rates to tetracycline (65.2% vs. 75.2%) and erythromycin (39.5% vs. 49.6%) in E. faecalis isolated from cats compared to those from dogs. However, in E. faecium, the resistance rates towards tetracycline (35.6% vs. 31.5%) and erythromycin (40.3% vs. 35.2%) were comparatively higher for dog isolates than cats. No or very few E. faecium and E. faecalis isolates were found to be resistant to daptomycin, florfenicol, tigecycline, and quinupristin/dalfopristin. Multidrug resistance (MDR) was higher in E. faecalis recovered from cats (44%) and dogs (33.9%) than in E. faecium isolated from cats (24.1%) and dogs (20.5%). Moreover, MDR patterns in E. faecalis isolates from dogs (27.2%) and cats (35.2%) were shown to encompass five or more antimicrobials. However, E. faecium isolates from dogs (at 13.4%) and cats (at 14.8%) were resistant to five or more antimicrobials. Taken together, the prevalence of antimicrobial-resistant enterococci in companion animals presents a potential public health concern.

7.
Foodborne Pathog Dis ; 20(11): 492-501, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699238

RESUMO

The production of ß-lactamase by nontyphoidal Salmonella has become a public health issue throughout the world. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of ß-lactamase-producing Salmonella enterica serovar Albany isolates. A total of 434 Salmonella Albany were obtained from feces and carcasses of healthy and diseased food-producing animals [cattle (n = 2), pigs (n = 3), chickens (n = 391), and ducks (n = 38)] during 2013-2020. Among the 434 Salmonella Albany isolates, 3.7% showed resistance to cefoxitin, and all the cefoxitin-resistant isolates were obtained from chickens. Moreover, Salmonella Albany isolates demonstrated high resistance to nalidixic acid (99.3%), trimethoprim/sulfamethoxazole (97.9%), ampicillin (86.6%), chloramphenicol (86.6%), and tetracycline (85.7%), as well as higher rates of multidrug resistance were detected in cefoxitin-resistant isolates compared to cefoxitin-susceptible isolates. All cefoxitin-resistant isolates harbored CMY-2-type ß-lactamase and belonged to seven different pulsotypes, with type IV-b (43.75%) and IV-a (25%) making up the majority. In addition, genes encoding cefoxitin resistant of all blaCMY-2-harboring Salmonella Albany isolates were horizontally transmitted to a recipient Escherichia coli J53 by conjugation. Furthermore, 93.75% (15/16) of conjugative plasmids harboring blaCMY-2 genes belong to ST12/CC12-IncI1. Genetic characteristics of transmitted blaCMY-2 genes were associated with ISEcp1, which can play an essential role in the effective mobilization and expression of these genes. Salmonella Albany containing blaCMY-2 in chickens can potentially be transferred to humans. Therefore, it is necessary to restrict antibiotic use and conduct continuous monitoring and analysis of resistant bacteria in the poultry industry.


Assuntos
Galinhas , Salmonella enterica , Humanos , Animais , Suínos , Bovinos , Galinhas/microbiologia , Cefoxitina/farmacologia , Sorogrupo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Salmonella/genética , República da Coreia , Escherichia coli , Resistência Microbiana a Medicamentos , Farmacorresistência Bacteriana Múltipla , Plasmídeos
8.
Sci Rep ; 13(1): 9469, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301922

RESUMO

Mites of the genus Tyrophagus (Acari: Acaridae) are among the most widely distributed mites. The species in this genus cause damage to stored products and crops, and pose a threat to human health. However, the influence of Tyrophagus spp. in apiculture remains unknown. In 2022, a study focusing on the identification of Tyrophagus species within five apiaries was conducted in Chungcheongnam Province, Republic of Korea. Its specific objective was to investigate the presence of Tyrophagus mites in response to the reported high mortality of honey bee colonies in this area. Morphological identification and phylogenetic analysis using the mitochondrial gene cytochrome-c oxidase subunit 1 (CO1) confirmed for the first time the presence of the mite species Tyrophagus curvipenis in a honey bee colony in the Republic of Korea. Two honey bee pathogens were detected in the mite, a viral pathogen (deformed wing virus, DWV) and a protozoal pathogen (Trypanosoma spp.). The presence of the two honey bee pathogens in the mite suggests that this mite could contribute to the spread of related honey bee diseases. However, the direct influence of the mite T. curvipenis on honey bee health remains unknown and should be further investigated.


Assuntos
Acaridae , Ácaros , Humanos , Animais , Abelhas , Filogenia , Ácaros/genética , República da Coreia
9.
BMC Microbiol ; 23(1): 150, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226109

RESUMO

BACKGROUND: American foulbrood (AFB) disease caused by Paenibacillus larvae is dangerous, and threatens beekeeping. The eco-friendly treatment method using probiotics is expected to be the prospective method for controlling this pathogen in honey bees. Therefore, this study investigated the bacterial species that have antimicrobial activity against P. larvae. RESULTS: Overall, 67 strains of the gut microbiome were isolated and identified in three phyla; the isolates had the following prevalence rates: Firmicutes 41/67 (61.19%), Actinobacteria 24/67 (35.82%), and Proteobacteria 2/67 (2.99%). Antimicrobial properties against P. larvae on agar plates were seen in 20 isolates of the genus Lactobacillus, Firmicutes phylum. Six representative strains from each species (L. apis HSY8_B25, L. panisapium PKH2_L3, L. melliventris HSY3_B5, L. kimbladii AHS3_B36, L. kullabergensis OMG2_B25, and L. mellis OMG2_B33) with the largest inhibition zones on agar plates were selected for in vitro larvae rearing challenges. The results showed that three isolates (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) had the potential to be probiotic candidates with the properties of safety to larvae, inhibition against P. larvae in infected larvae, and high adhesion ability. CONCLUSIONS: Overall, 20 strains of the genus Lactobacillus with antimicrobial properties against P. larvae were identified in this study. Three representative strains from different species (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) were evaluated to be potential probiotic candidates and were selected for probiotic development for the prevention of AFB. Importantly, the species L. panisapium isolated from larvae was identified with antimicrobial activity for the first time in this study.


Assuntos
Actinobacteria , Paenibacillus larvae , Probióticos , Abelhas , Animais , Paenibacillus larvae/genética , Ágar , Larva , Firmicutes , Lactobacillus , Probióticos/farmacologia
10.
Front Vet Sci ; 10: 1158196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065220

RESUMO

The introduction of bacteria into slaughterhouses can lead to microbial contamination in carcasses during slaughter, and the initial level of bacteria in carcasses is important because it directly affects spoilage and the shelf life. This study was conducted to investigate the microbiological quality, and the prevalence of foodborne pathogens in 200 carcasses from 20 pig slaughterhouses across Korea. Distribution of microbial counts were significantly higher for aerobic bacteria at 3.01-4.00 log10 CFU/cm2 (42.0%) and 2.01-3.00 log10 CFU/cm2 (28.5%), whereas most of Escherichia coli showed the counts under 1.00 log10 CFU/cm2 (87.0%) (P < 0.05). The most common pathogen isolated from 200 carcasses was Staphylococcus aureus (11.5%), followed by Yersinia enterocolitica (7.0%). In total, 17 S. aureus isolates from four slaughterhouses were divided into six pulsotypes and seven spa types, and showed the same or different types depending on the slaughterhouses. Interestingly, isolates from two slaughterhouses carried only LukED associated with the promotion of bacterial virulence, whereas, isolates from two other slaughterhouses carried one or more toxin genes associated with enterotoxins including sen. In total, 14 Y. enterocolitica isolates from six slaughterhouses were divided into nine pulsotypes, 13 isolates belonging to biotype 1A or 2 carried only ystB, whereas one isolate belonging to bio-serotype 4/O:3 carried both ail and ystA. This is the first study to investigate microbial quality and the prevalence of foodborne pathogens in carcasses from slaughterhouses nationally, and the findings support the need for ongoing slaughterhouse monitoring to improve the microbiological safety of pig carcasses.

11.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112876

RESUMO

Sacbrood virus (SBV) infection has emerged as a remarkable threat to Apis cerana colonies in South Korea, necessitating prompt control measures. In this study, RNA interference (RNAi) targeting the VP3 gene was developed to assess its safety and efficacy in protecting and treating SBV in vitro and in infected colonies in South Korean apiaries. The efficacy of VP3 double-stranded RNA (dsRNA) was demonstrated in laboratory-based experiments, wherein infected larvae treated with VP3 dsRNA exhibited a 32.7% increase in survival rate compared to untreated larvae. Data from a large-scale field trial indicate the efficacy of dsRNA treatment since none of the treated colonies had symptomatic SBV infections, whereas disease was observed in 43% (3/7) of the control colonies. In the 102 colonies exhibiting symptoms of SBV disease, RNAi treatment provided partial protection with weekly treatment, prolonging the survival period of colonies to 8 months compared to 2 months in colonies treated at 2- and 4-week intervals. Therefore, this study demonstrated that RNAi is a valuable tool for preventing SBV disease outbreaks in healthy and low-level SBV-infected colonies.


Assuntos
Vírus de RNA , Viroses , Animais , Abelhas/genética , Larva , Vírus de RNA/genética , RNA de Cadeia Dupla/genética
12.
Heliyon ; 9(2): e13494, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816323

RESUMO

Honey bees play an important role in the pollination of crops and wild plants and provide important products to humans. Pathogens and parasites are the main factors that threaten beekeeping in South Korea. Therefore, a nationwide detection of 14 honey bee pathogens, including parasites (phorid flies, Nosema ceranae, and Acarapis woodi mites), viruses, bacteria, and fungal pathogens, was conducted from 2017 to 2021 in the country. The infection rate and the trend of detection of each pathogenic agent were determined. A total of 830 honey bee samples from Apis cerana (n = 357) and A. mellifera (n = 473) were examined. N. ceranae (35.53%), deformed wing virus (52.63%), sacbrood virus (SBV) (52.63%), and black queen cell virus (55.26%) were the most prevalent honey bee pathogens, and their prevalence rapidly increased from 2017 to 2021. The prevalence of Paenibacillus larvae, Israeli acute paralysis virus, Ascosphaera apis, A. woodi, Melissococcus plutonius, and chronic bee paralysis virus remained stable during the surveillance period, with infection rates ranging from 5.26% to 16.45% in 2021. Other pathogens, including acute bee paralysis virus, phorid flies, Kashmir bee virus, and Aspergillus flavus, had low infection rates that gradually declined during the detection period. The occurrence of honeybee pathogens peaked in July. SBV was the most common pathogen in A. cerana, whereas N. ceranae was predominant in A. mellifera. This study provides information regarding the current status of honey bee pathogens and presents the trend of the occurrence of each pathogen in South Korea. These data are important for predicting outbreaks of honey bee diseases in the country.

13.
Foodborne Pathog Dis ; 20(1): 7-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577050

RESUMO

Antimicrobial-resistant bacteria isolated from food animals pose a major health threat to the public on this planet. This study aimed to determine the susceptibility profiles of Escherichia coli isolated from cattle and pig fecal samples and investigate the molecular characteristics of extended-spectrum ß-lactamase (ESBL)-producing E. coli using gene identification, conjugation, and Southern blot approach. Overall 293 E. coli were recovered from cattle (120 isolates) and pigs (173 isolates) in 7 provinces of Korea during 2017-2018. Ampicillin, chloramphenicol, streptomycin, and sulfisoxazole resistance rates were the highest in pigs' isolates (>60%, p ≤ 0.001) compared to that in cattle (3-39%). Multidrug resistance (MDR) was higher in pig isolates (73%) than in cattle (31%), and the MDR profile usually includes streptomycin, sulfisoxazole, and tetracycline. Resistance to critically important antimicrobials such as ceftiofur, colistin, and ciprofloxacin was higher in weaners than those from finishers in pigs. The qnrS gene was detected in 13% of the pig isolates. Eight isolates from pigs and one isolate from cattle were identified as ESBL-producers and ESBL genes belonged to blaCTX-M-55 (n = 4), blaCTX-M-14 (n = 3), and blaCTX-M-65 (n = 2). Notably, the blaCTX-M-65 and qnrS1 genes were found to be carried together in an identical plasmid (IncHI2) in two isolates from finisher pigs. The blaCTX-M-carrying isolates belonged to phylogenetic groups B1 (n = 4), B2 (n = 2), A (n = 2), and D (n = 1). The blaCTX-M genes and non-ß-lactam resistance traits were transferred to the E. coli J53 recipient from seven blaCTX-M-positive strains isolated from pigs. The blaCTX-M genes belonged to the IncI1α, IncFII, and IncHI2 plasmids and are also associated with the ISEcp1, IS26, IS903, and orf477 elements. These findings suggested the possibility of blaCTX-M-carrying E. coli transmission to humans through direct contact with cattle and pigs or contamination of food products.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Animais , Bovinos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , beta-Lactamases/genética , Farmacorresistência Bacteriana/genética , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Plasmídeos/genética , República da Coreia/epidemiologia , Estreptomicina/farmacologia , Sulfisoxazol/farmacologia , Suínos
14.
Antibiotics (Basel) ; 13(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38247586

RESUMO

The occurrence of antimicrobial-resistant bacteria in companion animals poses public health hazards globally. This study aimed to evaluate the antimicrobial resistance profiles and patterns of commensal E. coli strains obtained from fecal samples of healthy dogs and cats in South Korea between 2020 and 2022. In total, 843 E. coli isolates (dogs, n = 637, and cats, n = 206) were assessed for susceptibility to 20 antimicrobials. The resistance rates of the most tested antimicrobials were significantly higher in dog than in cat isolates. Cefalexin (68.9%) demonstrated the highest resistance rates, followed by ampicillin (38.3%), tetracycline (23.1%), and cefazolin (18.7%). However, no or very low resistance (0-0.6%) to amikacin, imipenem, piperacillin, and colistin was found in both dog and cat isolates. Overall, 42.3% of the isolates exhibited multidrug resistance (MDR). MDR in isolates from dogs (34.9%) was significantly higher than in those from cats (20.9%). The main components of the resistance patterns were cefalexin and ampicillin in both dog and cat isolates. Additionally, MDR patterns in isolates from dogs (29.2%) and cats (16%) were shown to encompass five or more antimicrobials. Multidrug-resistant commensal E. coli could potentially be spread to humans or other animals through clonal or zoonotic transmission. Therefore, the incidence of antimicrobial resistance in companion animals highlights the urgent need to restrict antimicrobial resistance and ensure the prudent use of antimicrobials in Korea.

15.
Genes (Basel) ; 13(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36360164

RESUMO

Genotyping of Coxiella burnetii using multispacer sequence typing (MST) and multiple locus variable number tandem repeat analysis (MLVA) was conducted from infected animals for the first time in the Republic of Korea. C. burnetii was detected by real-time PCR, and followed by MST and MLVA genotyping. The result showed that detected C. burnetii all had the same MLVA genotype, 6-13-2-7-9-10 for markers MS23-MS24-MS27-MS28-MS33-MS34, respectively, and genotype group 61 for MST. The same genotypes were previously identified in Poland. Importantly, this MLVA type was detected in humans in France, suggesting that the Korean strain can also potentially cause Q fever in humans. MST and MLVA were very useful tools for analyzing the molecular epidemiology of C. burnetii and helpful for interpreting the epidemiological relationship between isolates from domestic and international resources.


Assuntos
Doenças dos Bovinos , Coxiella burnetii , Febre Q , Humanos , Bovinos , Animais , Coxiella burnetii/genética , Repetições Minissatélites/genética , Genótipo , Febre Q/epidemiologia , Febre Q/veterinária , Febre Q/genética , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética
16.
Foodborne Pathog Dis ; 19(10): 663-674, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125409

RESUMO

Extended-spectrum ß-lactamase (ESBL)-producing Salmonella enterica serovar Enteritidis has emerged as a public health concern. The main objectives of this study were therefore to determine the antimicrobial susceptibility profiles of Salmonella Enteritidis and to investigate the molecular characteristics of identified ESBL-producing isolates. In the study, 237 Salmonella Enteritidis isolates (232 isolates from chickens, 4 from cattle, and 1 from a pig) were recovered from carcasses and fecal samples of healthy and diseased food animals between 2010 and 2017. Ceftiofur resistance was noted only in chicken isolates (43%, 102/237), with the highest in healthy chickens and their carcasses (48.3%, 83/172) compared with that in diseased chickens (31.7%, 19/60). All of the ceftiofur-resistant isolates exhibited resistance to multiple antimicrobials. Indeed, a relatively higher percentage of ceftiofur-resistant isolates demonstrated resistance to the tested aminoglycosides and tetracycline compared with the ceftiofur-susceptible strains. In this study, blaCTX-M-15 was the only ESBL gene detected in all of the ceftiofur-resistant isolates. The blaCTX-M-15-carrying isolates belonged to 11 different pulsotypes. The blaCTX-M-15 gene was transferred from 20.6% (21/102) of the blaCTX-M-15-harboring isolates to a recipient Escherichia coli J53. The coexistence of IncHI2/ST2 and IncFIIs/ST1 plasmids was noted in the majority (81.8%, 18/22) of the transconjugants. E. coli J53 transconjugants carrying blaCTX-M-15 gene showed distinct genetic environments, predominantly ISEcp1-blaCTX-M-15-orf477 (15/21, 71.4%). This study demonstrated that healthy chickens and their carcasses act as reservoirs of blaCTX-M-15-carrying Salmonella Enteritidis that can potentially be transmitted to humans.


Assuntos
Infecções por Escherichia coli , Salmonella enterica , Animais , Bovinos , Humanos , Aminoglicosídeos , Antibacterianos/farmacologia , beta-Lactamases/genética , Galinhas , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli , Proteína 1 Semelhante a Receptor de Interleucina-1 , Salmonella enterica/genética , Salmonella enteritidis/genética , Suínos , Tetraciclinas , República da Coreia
17.
Microorganisms ; 10(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014085

RESUMO

The emergence of bacterial infections in companion animals is a growing concern as humans can also be infected through the transmission of pathogenic bacteria. Because there have been few studies conducted on companion animals, the extent and significance of prevalence in veterinary practices remain unknown. This is the first nationwide surveillance report aimed at elucidating the prevalence pattern and associated infections of isolated bacteria from dogs in Korea. Bacterial isolates were collected from seven different laboratories participating in the Korean Veterinary Antimicrobial Resistance Monitoring System from 2018 to 2019. The samples were obtained from the diarrheal stool, skin/ear, urine, and respiratory samples of veterinary hospital-visited dogs. Isolation and identification of bacterial species was carried out using a bacterial culture approach and then confirmed with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF) and polymerase chain reaction (PCR). Out of 3135 isolates in dogs, 1085, 1761, 171, and 118 were extracted from diarrheal stool, skin/ear, urine, and respiratory samples, respectively. The overall prevalence of bacteria was higher among two age groups (1-5 and 6-10 years) with a 66.5 percent prevalence. This study showed that Escherichia coli was the most prevalent species among isolated bacterial species of diarrheal and urine origin, whereas Staphylococcus pseudintermedius was the most prevalent among skin and respiratory sample isolates. The data on the prevalence of bacteria for each dog specimen could provide basic information to estimate the extent of bacterial infection and antimicrobial resistance development and to guide veterinarians in therapeutic decisions in clinical practices throughout Korea.

18.
Sci Rep ; 12(1): 12672, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879387

RESUMO

Migratory birds disperse ticks and associated tick-borne pathogens along their migratory routes. Four selected pathogens of medical importance (Coxiella burnetii, Rickettsia spp., Francisella tularensis, and Toxoplasma gondii) were targeted for detection in 804 ticks (365 pools) collected from migratory birds at Hong and Heuksan Islands in the Republic of Korea (ROK) from 2010 to 2011 and 2016. Toxoplasma gondii and Rickettsia spp., were detected in 1/365 (0.27%) and 34/365 (9.32%) pools of ticks, respectively. T. gondii and five rickettsial species were recorded in ticks collected from migratory birds for the first time in ROK. The five rickettsial species (R. monacensis, Candidatus Rickettsia longicornii, R. japonica, R. raoultii, and R. tamurae) were identified using sequence and phylogenetic analysis using ompA and gltA gene fragments. Rickettsia spp. are important pathogens that cause rickettsiosis in humans, with cases recorded in the ROK. These results provide important evidence for the potential role of migratory birds in the introduction and dispersal of T. gondii and Rickettsia spp. along their migratory routes and raise awareness of potential transmission of zoonotic tick-borne pathogens associated with migratory birds in the ROK.


Assuntos
Rickettsia , Carrapatos , Toxoplasma , Animais , Aves , Humanos , Filogenia , República da Coreia , Rickettsia/genética , Toxoplasma/genética
19.
Sci Rep ; 12(1): 10010, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705585

RESUMO

Honey bees are important pollinators for the conservation of the ecosystem and agricultural products and provide a variety of products important for human use, such as honey, pollen, and royal jelly. Sacbrood disease (SD) is a devastating viral disease in Apis cerana; an effective preventive measure for SD is urgently needed. In this study, the relationship between the gut microbiome of honey bees and SD was investigated by pyrosequencing. Results revealed that sacbrood virus (SBV)-resistant A. cerana strains harbour a unique acetic acid bacterium, Bombella intestini, and the lactic acid bacteria (LAB) Lactobacillus (unclassified)_uc, Bifidobacterium longum, B. catenulatum, Lactococcus lactis, and Leuconostoc mesenteroides in larvae and Hafnia alvei, B. indicum, and the LAB L. mellifer and Lactobacillus HM215046_s in adult bees. Changes in the gut microbiome due to SBV infection resulted in loss of bacteria that could affect host nutrients and inhibit honey bee pathogens, such as Gilliamella JFON_s, Gilliamella_uc, Pseudomonas putida, and L. kunkeei in A. cerana larvae and Frischella_uc, Pantoea agglomerans, Snodgrassella_uc, and B. asteroides in adult bees. These findings provide important information for the selection of probiotics for A. cerana larvae and adults to prevent pathogenic infections and keep honey bees healthy.


Assuntos
Microbioma Gastrointestinal , Vírus de RNA , Viroses , Animais , Bactérias/genética , Abelhas , Suscetibilidade a Doenças , Ecossistema , Larva
20.
BMC Vet Res ; 18(1): 199, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624477

RESUMO

BACKGROUND: Rickettsia spp. are important tick-borne pathogens that cause various human and animal diseases worldwide. A tool for rapid and accurate detection of the pathogens from its vectors is necessary for prevention of Rickettsioses propagation in humans and animals, which are infested by ticks. Therefore, this study was conducted to evaluate a molecular tool, ultra-rapid real-time PCR (UR-qPCR), for rapid and accurate detection of Rickettsia spp. from 5644 ticks in 408 pools collected from livestock and their surrounding environments in Gangwon and Jeju province in South Korea. RESULTS: The UR-qPCR of Rickettsia DNA showed a limit of detection of 2.72 × 101 copies of Rickettsia DNA and no cross reaction with other tick-borne pathogens, namely Anaplasma phagocytophilum, Ehrlichia chaffeensis, E. canis, Toxoplasma gondii, and Borrelia burgdorferi. In addition, the PCR assay also showed possibility of various Rickettsia species detection including R. monacensis, "Candidatus R. longicornii", R. japonica, R. roultii, and R. tamurae. The collected ticks were identified with major species belonged to Haemaphysalis longicornis (81.62%), followed by H. flava (15.19%), and Ixodes nipponensis (3.19%). Rickettsia detection from tick samples using the UR-qPCR showed that the minimum infection rate (MIR) of Rickettsia in collected ticks was 1.24‰ and that all positive pools contained H. longicornis, equal to the MIR of 1.39‰ of this species. Additionally, MIR of Rickettsia spp. detected in ticks collected in Gangwon and Jeju was 1.53‰ and 0.84‰, respectively. Furthermore, the sequencing results of the 17 kDa protein antigen gene and ompA gene showed that Rickettsia spp. sequences from all pools were related to "Candidatus R. longicornii" and "Candidatus R. jingxinensis". CONCLUSIONS: The UR-qPCR system was demonstrated to be useful tool for accurate and rapid detection of Rickettsia from its vector, ixodid ticks, within 20 min. The data on Rickettsia spp. in ticks detected in this study provide useful information on the distribution of Rickettsia in previously unstudied Korean provinces, which are important for the prevention and control of the spread of rickettsioses in both animals and humans in the country.


Assuntos
Ixodes , Ixodidae , Infecções por Rickettsia , Rickettsia , Animais , Ixodes/microbiologia , Ixodidae/microbiologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Rickettsia/genética , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA